Flytte Gjennomsnittet Prosess Time Serien


Introduksjon til ARIMA nonseasonal modeller. ARIMA p, d, q prognose ligning ARIMA modeller er i teorien den mest generelle klassen av modeller for å prognose en tidsserie som kan gjøres for å være stasjonær ved differensiering om nødvendig, kanskje sammen med ikke-lineære transformasjoner for eksempel logging eller deflating hvis nødvendig En tilfeldig variabel som er en tidsserie er stasjonær hvis dens statistiske egenskaper er konstant over tid En stasjonær serie har ingen trend, dens variasjoner rundt sin gjennomsnitt har en konstant amplitude og den vri på en konsistent måte dvs. at kortsiktige tilfeldige tidsmønstre alltid ser like ut i statistisk forstand. Den sistnevnte tilstanden betyr at dets autokorrelasjonskorrelasjoner med sine egne tidligere avvik fra middelværdien forblir konstant over tid, eller tilsvarende, at dets effektspektrum forblir konstant over tid En tilfeldig variabel i dette skjemaet kan sees som vanlig som en kombinasjon av signal og støy, og signalet hvis det er tydelig kan være en patt ern med rask eller langsom gjennomsnittlig reversering eller sinusformet svingning eller rask veksling i tegn, og det kan også ha en sesongkomponent. En ARIMA-modell kan sees som et filter som forsøker å skille signalet fra støyen, og signalet er da ekstrapolert inn i fremtiden for å oppnå prognoser. ARIMA-prognose-ligningen for en stasjonær tidsserie er en lineær ie-regresjonstypekvasjon der prediktorene består av lag av den avhengige variabelen og eller lagrer prognosefeilene som er. Forutsatt verdi av Y en konstant og eller vektet sum av en eller flere nylige verdier av Y og eller en vektet sum av en eller flere nylige verdier av feilene. Hvis prediktorene bare består av forsinkede verdier av Y, er det en ren autoregressiv selvregressert modell, som bare er et spesielt tilfelle av en regresjonsmodell, og som kan forsynes med standard regresjonsprogramvare. For eksempel er en første-ordens autoregressiv AR 1-modell for Y en enkel regresjonsmodell der den uavhengige variabelen i s bare Y forsinket med en periode LAG Y, 1 i Statgraphics eller YLAG1 i RegressIt Hvis noen av prediktorene lags av feilene, er en ARIMA-modell det IKKE en lineær regresjonsmodell, fordi det ikke er mulig å spesifisere siste periode s feil Som en uavhengig variabel må feilene beregnes fra tid til annen når modellen er montert på dataene. Fra et teknisk synspunkt er problemet med å bruke forsinkede feil som prediktorer at modellens spådommer ikke er lineære funksjoner av koeffisienter, selv om de er lineære funksjoner i fortidens data. Således skal koeffisienter i ARIMA-modeller som inneholder forsinkede feil estimeres ved ikke-lineære optimaliseringsmetoder bakkeklatring i stedet for bare å løse et system av ligninger. Akronym ARIMA står for automatisk regressiv integrert Flytte gjennomsnittlig Lags av den stationære serien i prognosen ligningen kalles autoregressive vilkår, lags av prognosen feilene kalles glidende gjennomsnittlige vilkår og en tidsserie som trenger å bli differensiert for å bli gjort stasjonære, sies å være en integrert versjon av en stasjonær serie Tilfeldige gange og tilfeldige trendmodeller, autoregressive modeller og eksponentielle utjevningsmodeller er alle spesielle tilfeller av ARIMA-modeller. En ikke-sasonlig ARIMA-modell er klassifisert som en ARIMA p, d, q modell, hvor. p er antall autoregressive termer. d er antall ikke-soneforskjeller som trengs for stasjonar, og. q er antall forsinkede prognosefeil i prediksjonsligningen. Forutsigelsesligningen er konstruert som følger Først, la y betegne den forskjellen på Y som betyr. Merk at den andre forskjellen på Y d2-tilfellet ikke er forskjellen fra 2 perioder siden. Det er først den forskjellen som er den første forskjellen som er den diskrete analogen til et andre derivat, det vil si den lokale akselerasjonen av serien i stedet for den lokale trenden. Med hensyn til y er den generelle prognosekvasjonen her. De bevegelige gjennomsnittsparametrene s er definert slik at deres tegn er negative i ekv. Uasjon, etter konvensjonen som ble innført av Box og Jenkins. Noen forfattere og programvare, inkludert R-programmeringsspråket, definerer dem slik at de har pluss tegn i stedet. Når faktiske tall er plugget i ligningen, er det ingen tvetydighet, men det er viktig å vite hvilken konvensjon programvaren din bruker når du leser utdata Ofte er parameterne angitt der med AR 1, AR 2, og MA 1, MA 2 osv. For å identifisere riktig ARIMA-modell for Y begynner du ved å bestemme rekkefølgen av differensiering d som trenger å stasjonærisere serien og fjerne bruttoegenskapene til sesongmessigheten, kanskje i forbindelse med en variansstabiliserende transformasjon som logging eller deflating Hvis du stopper på dette punktet og forutser at differensierte serier er konstante, har du bare montert en tilfeldig tur eller tilfeldig Trendsmodell Den stasjonære serien kan imidlertid fortsatt ha autokorrelerte feil, noe som tyder på at noen AR-vilkår p 1 og eller noen nummer MA-termer q 1 også trengs i prognosekvasjonen. Prosessen med å bestemme verdiene p, d og q som er best for en gitt tidsserie, vil bli diskutert i senere avsnitt i notatene hvis koblinger er øverst på denne siden, men en forhåndsvisning av noen av de typer ikke-sasonlige ARIMA-modellene som ofte oppstår, er gitt nedenfor. ARIMA 1,0,0 førsteordens autoregressive modell hvis serien er stasjonær og autokorrelert, kanskje den kan forutsies som et flertall av sin egen tidligere verdi, pluss en konstant Forutsigelsesligningen i dette tilfellet er. som er Y regressert i seg selv forsinket av en periode Dette er en ARIMA 1,0,0 konstant modell Hvis gjennomsnittet av Y er null, vil ikke det konstante begrepet bli inkludert. Hvis skråningen er koeffisient 1 er positiv og mindre enn 1 i størrelsesorden skal den være mindre enn 1 i størrelsesorden hvis Y er stasjonær, beskriver modellen gjennomsnittsreferanseadferd, der neste periode s-verdi skal anslås å være 1 ganger så langt unna gjennomsnittlig som denne perioden s verdi Hvis 1 er negativ, det forutser gjennombruddsadferd med skifting av tegn, dvs. det forutsier også at Y vil være under gjennomsnittlig neste periode hvis den er over gjennomsnittet i denne perioden. I en andreordens autoregressiv modell ARIMA 2,0,0 ville det være en Y t-2 termen til høyre også, og så videre. Avhengig av tegn og størrelser av koeffisientene, kunne en ARIMA 2,0,0 modell beskrive et system hvis gjennomsnitts reversering foregår i sinusformet oscillerende mote, som bevegelsen av en masse på en fjær som er utsatt for tilfeldige støt. ARIMA 0,1,0 tilfeldig tur Hvis serien Y ikke er stasjonær, er den enkleste mulige modellen for en tilfeldig turmodell, som kan betraktes som et begrensende tilfelle av en AR 1-modell hvor den autoregressive koeffisienten er lik 1, dvs. en serie med uendelig sakte, gjennomsnittlig reversering. Forutsigelsesligningen for denne modellen kan skrives som. hvor konstant sikt er den gjennomsnittlige perioden til periode-endringen, dvs. langsiktig Drift i Y Denne modellen kan monteres som en ikke-avskjæringsrekkefølge gryningsmodell hvor den første forskjellen i Y er den avhengige variabelen Siden den bare inneholder en ikke-soneforskjell og en konstant periode, er den klassifisert som en ARIMA 0,1,0-modell med konstant. Den tilfeldige-walk-uten-drift-modellen ville være en ARIMA 0,1,0-modell uten konstant. ARIMA 1,1,0 differensiert førsteordens autoregressiv modell Hvis feilene i en tilfeldig turmodell er autokorrelert, kan problemet løses ved å legge til et lag av den avhengige variabelen til prediksjonsligning - dvs. ved å regresse den første forskjellen på Y i seg selv forsinket av en periode. Dette ville gi følgende prediksjonsligning. Det kan omarrangeres til. Dette er en førsteordens autoregressiv modell med en rekkefølge av ikke-soneforskjeller og en konstant term - en ARIMA 1,1,0 modell. ARIMA 0,1,1 uten konstant enkel eksponensiell utjevning En annen strategi for å korrigere autokorrelerte feil i en tilfeldig gangmodell er foreslått av den enkle eksponensielle utjevningsmodellen. Husk at for noen ikke-stationære tidsserier, for eksempel de som har støyende fluktuasjoner rundt et sakte varierende middel, utfører ikke den tilfeldige turmodellen så vel som et glidende gjennomsnitt av tidligere verdier. Med andre ord, i stedet for å ta den nyeste observasjonen som prognosen for neste observasjon , er det bedre å bruke et gjennomsnitt av de siste observasjonene for å filtrere ut støy og mer nøyaktig estimere det lokale gjennomsnittet. Den enkle eksponensielle utjevningsmodellen bruker et eksponentielt vektet glidende gjennomsnitt av tidligere verdier for å oppnå denne effekten. Forutsigelsesligningen for Enkel eksponensiell utjevningsmodell kan skrives i en rekke matematisk ekvivalente former, hvorav en er den såkalte feilkorreksjonsformen, der den forrige prognosen er justert i retning av feilen som den gjorde. Fordi e t-1 Y t - 1 - t-1 per definisjon, dette kan omskrives som. som er en ARIMA 0,1,1-uten konstant prognosekvasjon med 1 1 - Dette betyr at du kan passe en enkel eksponentiell smoo ting ved å spesifisere det som en ARIMA 0,1,1 modell uten konstant, og den estimerte MA 1-koeffisienten tilsvarer 1-minus-alfa i SES-formelen. Husk at i SES-modellen er gjennomsnittsalderen for dataene i 1- Forutgående prognoser er 1, noe som betyr at de vil ha en tendens til å ligge bak trender eller vendepunkter med ca. 1 perioder. Det følger at gjennomsnittsalderen for dataene i de 1-årige prognosene for en ARIMA 0,1,1-uten - konstant modell er 1 1 - 1 For eksempel hvis 1 0 8 er gjennomsnittsalderen 5 Når 1 nærmer seg 1, blir ARIMA 0,1,1-uten-konstant modell et veldig langsiktig glidende gjennomsnitt, og som 1 nærmer seg 0 blir det en tilfeldig walk-without-drift-modell. Hva er den beste måten å korrigere for autokorrelasjon, legge til AR-vilkår eller legge til MA-termer I de to foregående modeller diskutert problemet med autokorrelerte feil i en tilfeldig walk-modell ble løst på to forskjellige måter ved å legge til en forsinket verdi av differensierte serier til ligningen eller legge til en forsinket verdi av forecaen st feil Hvilken tilnærming er best En tommelfingerregel for denne situasjonen, som vil bli nærmere omtalt senere, er at positiv autokorrelasjon vanligvis behandles best ved å legge til et AR-uttrykk for modellen og negativ autokorrelasjon vanligvis behandles best av legge til en MA-term I forretnings - og økonomiske tidsserier oppstår negativ autokorrelasjon ofte som en artefakt av differensiering. Generelt reduserer differensiering positiv autokorrelasjon og kan til og med forårsake en bytte fra positiv til negativ autokorrelasjon. Så, ARIMA 0,1,1-modellen, i hvilke differensier er ledsaget av en MA-term, brukes hyppigere enn en ARIMA 1,1,0-modell. ARIMA 0,1,1 med konstant enkel eksponensiell utjevning med vekst Ved å implementere SES-modellen som en ARIMA-modell, får du faktisk noen fleksibilitet Først og fremst kan den estimerte MA 1-koeffisienten være negativ, dette tilsvarer en utjevningsfaktor som er større enn 1 i en SES-modell, som vanligvis ikke er tillatt i SES-modellprosedyren Sec ond, du har muligheten til å inkludere en konstant periode i ARIMA-modellen hvis du ønsker det, for å estimere en gjennomsnittlig ikke-null trend. ARIMA 0,1,1-modellen med konstant har prediksjonsligningen. En-tiden fremover prognosene fra denne modellen er kvalitativt lik SES-modellen, bortsett fra at bane av de langsiktige prognosene typisk er en skrånende linje hvis skråning er lik mu i stedet for en horisontal linje. ARIMA 0,2,1 eller 0, 2,2 uten konstant lineær eksponensiell utjevning Linjære eksponentielle utjevningsmodeller er ARIMA-modeller som bruker to ikke-sekundære forskjeller i sammenheng med MA-termer. Den andre forskjellen i en serie Y er ikke bare forskjellen mellom Y og seg selv forsinket med to perioder, men heller er det den første forskjellen i den første forskjellen - Y-endringen av Y ved periode t Således er den andre forskjellen på Y ved periode t lik Y t-Y t-1 - Y t-1 - Y T-2 Y t - 2Y t-1 Y t-2 En annen forskjell på en diskret funksjon er analog s til et andre derivat av en kontinuerlig funksjon, måles akselerasjonen eller krumningen i funksjonen på et gitt tidspunkt. ARIMA 0,2,2-modellen uten konstant forutser at den andre forskjellen i serien er lik en lineær funksjon av den siste to prognosefeil. som kan omarrangeres som. hvor 1 og 2 er MA 1 og MA 2-koeffisientene Dette er en generell lineær eksponensiell utjevningsmodell som i det vesentlige er den samme som Holt s-modellen, og Brown s-modellen er et spesielt tilfelle. Det bruker eksponentielt vektet Flytte gjennomsnitt for å anslå både et lokalt nivå og en lokal trend i serien. De langsiktige prognosene fra denne modellen konvergerer til en rett linje hvis skråning avhenger av den gjennomsnittlige trenden observert mot slutten av serien. ARIMA 1,1,2 uten konstant fuktet trend lineær eksponensiell utjevning. Denne modellen er illustrert i de tilhørende lysbildene på ARIMA-modeller. Det ekstrapolerer den lokale trenden i slutten av serien, men flater ut på lengre prognoshorisont for å introdusere en Conservatism, en praksis som har empirisk støtte. Se artikkelen om Hvorfor Damped Trend fungerer av Gardner og McKenzie og Golden Rule-artikkelen av Armstrong et al for detaljer. Det er generelt tilrådelig å holde fast i modeller der minst en av p og q er ikke større enn 1, det vil si ikke å passe på en modell som ARIMA 2,1,2, da dette sannsynligvis vil føre til overfitting og fellesfaktorproblemer som blir nærmere omtalt i notatene om matematisk struktur av ARIMA modeller. Spreadsheet implementering ARIMA modeller som de som er beskrevet ovenfor er enkle å implementere på et regneark. Prediksjonsligningen er bare en lineær ligning som refererer til tidligere verdier av originale tidsserier og tidligere verdier av feilene. Dermed kan du sette opp et ARIMA prognose regneark ved å lagre dataene i kolonne A, prognoseformelen i kolonne B og feildataene minus prognosene i kolonne C Forutsigelsesformelen i en typisk celle i kolonne B ville rett og slett være en lineær ekspresjon n refererer til verdier i forrige rader med kolonner A og C, multiplisert med de relevante AR - eller MA-koeffisientene lagret i celler andre steder på regnearket.2 1 Moving Average Models MA modeller. Tidsseriemodeller kjent som ARIMA-modeller kan omfatte autoregressive termer og eller flytte gjennomsnittlige vilkår I uke 1 lærte vi et autoregressivt uttrykk i en tidsseriemodell for variabelen xt er en forsinket verdi på xt For eksempel er et lag 1 autoregressivt uttrykk x t-1 multiplisert med en koeffisient Denne leksjonen definerer glidende gjennomsnittlige termer . En glidende gjennomsnittlig term i en tidsseriemodell er en fortid feil multiplisert med en koeffisient. La oss oversette N 0, sigma 2w, noe som betyr at vekten er identisk, uavhengig distribuert, hver med en normalfordeling som har middelverdien 0 og den samme variansen . Den 1 st ordningsgjøre gjennomsnittlig modell, betegnet med MA 1 er. xt mu wt theta1w. Den 2. ordre flytte gjennomsnittlig modell, betegnet av MA 2 er. xt mu wt theta1w theta2.Den q ordreberegning av gjennomsnittlig modell, betegnet med MA q er. xt mu wt theta1w theta2w prikker thetaq. Note Mange lærebøker og programvare definerer modellen med negative tegn før betingelsene. Dette endrer ikke de generelle teoretiske egenskapene til modellen, selv om den ikke flipper de algebraiske tegnene på estimerte koeffisientverdier og ubetingede vilkår i formler for ACFer og avvik Du må sjekke programvaren din for å verifisere om negative eller positive tegn har blitt brukt for å skrive riktig estimert modell R bruker positive tegn i sin underliggende modell, slik vi gjør her. Theoretiske egenskaper av en tidsrekke med en MA 1-modell. Merk at den eneste ikke-nullverdien i teoretisk ACF er for lag 1 Alle andre autokorrelasjoner er 0 Således er en prøve-ACF med en signifikant autokorrelasjon bare ved lag 1 en indikator på en mulig MA 1-modell. For interesserte studenter, Bevis på disse egenskapene er et vedlegg til denne utleveringen. Eksempel 1 Anta at en MA 1-modell er xt 10 wt 7 w t-1 hvor overskuddet N 0,1 Altså koeffisienten 1 0 7 Th e teoretisk ACF er gitt av. Et plott av denne ACF følger. Plottet som nettopp er vist er den teoretiske ACF for en MA 1 med 1 0 7 I praksis fikk en prøve t vanligvis et slikt klart mønster. Ved hjelp av R simulerte vi n 100 Eksempelverdier ved hjelp av modellen xt 10 wt 7 w t-1 hvor w t. iid N 0,1 For denne simuleringen følger en tidsserier av prøvedataene. Vi kan ikke fortelle mye fra denne plottet. Prøven ACF for den simulerte data følger Vi ser en spike i lag 1 etterfulgt av generelt ikke signifikante verdier for lags fortid 1 Merk at prøven ACF ikke samsvarer med det teoretiske mønsteret til den underliggende MA 1, som er at alle autokorrelasjoner for lags forbi 1 vil være 0 A forskjellig prøve ville ha en litt annen prøve-ACF som vist nedenfor, men vil trolig ha de samme brede funksjonene. Deoretiske egenskaper av en tidsrekkefølge med en MA 2-modell. For MA 2-modellen er teoretiske egenskaper følgende. Merk at den eneste ikke-null Verdiene i teoretisk ACF er for lags 1 og 2 Autocorrelat ioner for høyere lags er 0 Så, en prøve-ACF med signifikante autokorrelasjoner på lags 1 og 2, men ikke-signifikante autokorrelasjoner for høyere lags indikerer en mulig MA 2-modell. Nid koeffisientene er 1 0 5 og 2 0 3 Fordi dette er en MA 2, vil den teoretiske ACF ha null nullverdier bare ved lags 1 og 2.Values ​​av de to ikke-autokorrelasjonene er. En plot av den teoretiske ACF følger. Som nesten alltid er tilfellet, vil prøvedata vunnet t oppføre seg ganske så perfekt som teori Vi simulerte n 150 utvalgsverdier for modellen xt 10 wt 5 w t-1 3 w t-2 hvor w t. iid N 0,1 Tidsseriens plott av dataene følger Som med tidsseriens plott for MA1-prøvedataene, kan du ikke fortelle mye av det. Prøven ACF for de simulerte dataene følger Mønsteret er typisk for situasjoner der en MA 2-modell kan være nyttig. Det er to statistisk signifikante pigger på lags 1 og 2 etterfulgt av ikke - - sviktige verdier for andre lag. Merk at på grunn av prøvetakingsfeil ikke samsvarte ACF det teoretiske mønsteret nøyaktig. ACF for General MA q Models. A egenskapen til MA q - modeller generelt er at det er ikke-null autokorrelasjoner for de første q lags og autocorrelations 0 for alle lags q. Non-uniqueness av forbindelse mellom verdier på 1 og rho1 i MA 1-modell. I MA 1-modellen, for en verdi på 1, gir den gjensidige 1 1 samme verdi. For eksempel, bruk 0 5 for 1 og bruk deretter 1 0 5 2 for 1 Du får rho1 0 4 i begge tilfeller. For å tilfredsstille en teoretisk begrensning som kalles invertibilitet begrenser vi MA 1-modeller til å ha verdier med absolutt verdi mindre enn 1 I eksemplet som er gitt, vil 1 0 5 være en tillatelig parameterverdi, mens 1 1 0 5 2 ikke vil. Invertibility av MA modeller. En MA-modell sies å være invertibel hvis den er algebraisk tilsvarer en konvergerende uendelig rekkefølge AR-modell. Ved konvertering mener vi at AR-koeffisientene reduseres til 0 når vi beveger oss tilbake i tiden. Invertibility er en begrensning programmert inn i tidsserier programvare som brukes til å estimere coeff ICE-modeller med MA-vilkår Det er ikke noe vi ser etter i dataanalysen. Ytterligere informasjon om inverterbarhetsbegrensningen for MA 1-modeller er gitt i vedlegget. Avansert teoretisk merknad For en MA q-modell med en spesifisert ACF, er det bare en inverterbar modell Den nødvendige betingelsen for inverterbarhet er at koeffisientene har verdier slik at ligningen 1- 1 y - qyq 0 har løsninger for y som faller utenfor enhetens sirkel. R Kode for eksemplene. I eksempel 1 plottet vi teoretisk ACF av modellen xt 10 wt 7w t-1 og deretter simulert n 150 verdier fra denne modellen og plottet prøve tidsseriene og prøven ACF for de simulerte data R-kommandoene som ble brukt til å plotte den teoretiske ACF var. acfma1 ARMAacf ma c 0 7, 10 lags av ACF for MA 1 med theta1 0 7 lags 0 10 skaper en variabel som heter lags som varierer fra 0 til 10 plot lags, acfma1, xlim c 1,10, ylab r, type h, hoved ACF for MA 1 med theta1 0 7 abline h 0 legger en horisontal akse til plottet. Th e første kommandoen bestemmer ACFen og lagrer den i en gjenstand som heter acfma1 vårt valg av navn. Plot-kommandoen 3. kommando-plottene lags versus ACF-verdiene for lags 1 til 10 ylab-parameteren merker y-aksen og hovedparameteren setter en tittel på plottet. For å se de numeriske verdiene til ACF, bruk bare kommandoen acfma1. Simuleringen og plottene ble gjort med følgende kommandoer. liste ma c 0 7 Simulerer n 150 verdier fra MA 1 x xc 10 legger til 10 for å lage gjennomsnitt 10 Simuleringsstandarder betyr 0 plot x, type b, hoved Simulert MA 1 data acf x, xlim c 1,10, hoved ACF for simulert prøve-data. I eksempel 2 skisserte vi den teoretiske ACF av modellen xt 10 wt 5 w t-1 3 w t-2 og simulerte deretter n 150 verdier fra denne modellen og plottet prøve tidsserien og prøven ACF for den simulerte data R-kommandoene som ble brukt var. acfma2 ARMAacf ma c 0 5,0 3, acfma2 lags 0 10 plot lags, acfma2, xlim c 1,10, ylab r, type h, hoved ACF for MA 2 med theta1 0 5, theta2 0 3 abline h 0 liste ma c 0 5, 0 3 x xc 10 plot x, type b, hoved Simulert MA 2-serie acf x, xlim c 1,10, hoved ACF for simulert MA 2 Data. Appendix Bevis på egenskaper til MA 1 . For interesserte studenter, her er det bevis på teoretiske egenskaper til MA 1-modellen. Varianttekst xt tekst mu wt theta1 w 0 tekst wt tekst theta1w sigma 2w theta 21 sigma 2w 1 theta 21 sigma 2When h 1 er det forrige uttrykket 1 w 2 For noen h 2 , forrige uttrykk 0 Årsaken er at ved definisjon av uavhengighet av Wt E wkwj 0 for noen kj Videre, fordi wt har betyde 0, E wjwj E wj 2 w 2.For en tidsserie. Bruk dette resultatet for å få ACF gitt ovenfor. En inverterbar MA-modell er en som kan skrives som en uendelig rekkefølge AR-modell som konvergerer slik at AR-koeffisientene konvergerer til 0 mens vi beveger oss uendelig tilbake i tid. Vi skal demonstrere inverterbarhet for MA 1-modellen. substituttforhold 2 for w t-1 i ligning 1. 3 zt wt theta1 z - theta1w wt theta1z - theta 2w. At tiden t-2 ligning 2 blir. Vi erstatter deretter forhold 4 for w t-2 i ligning 3. zt wt theta1 z - theta 21w wt theta1z - theta 21 z - theta1w wt theta1z - theta1 2z theta 31.If vi skulle fortsette uendelig, ville vi få den uendelige rekkefølgen AR - modellen. Zt wt theta1 z - theta 21z theta 31z - theta 41z prikker. Merk at hvis 1 1, vil koeffisientene som multipliserer lagene av z, øke uendelig i størrelse når vi beveger seg tilbake i tid. For å forhindre dette, trenger vi 1 1 Dette er betingelsen for en inverterbar MA 1 modell. Infinite Order MA modell. I uke 3 ser vi at en AR 1-modell kan konverteres til en uendelig rekkefølge MA-modell. xt - mu wt phi1w phi 21w prikker phi k1 w prikker sum phi j1w. Denne summeringen av tidligere hvite støybetingelser er kjent som en årsakssammenstilling av en AR 1 Med andre ord er xt en spesiell type MA med et uendelig antall termer går tilbake i tid Dette kalles en uendelig ordre MA eller MA En endelig ordre MA er en uendelig orden AR og en hvilken som helst endelig ordre AR er en uendelig ordre MA. Recall i uke 1, bemerket vi at et krav til en stasjonær AR 1 er at 1 1 La oss beregne Var xt ved hjelp av årsakssammensetningen. Dette siste trinnet bruker et grunnleggende faktum om geometrisk serie som krever phi1 1 ellers ser serien diverger. Gjennomsnittlig gjennomsnitt. Dette eksemplet lærer deg hvordan du beregner det bevegelige gjennomsnittet av en tidsserie i Excel Et glidende gjennomsnitt brukes til å utjevne uregelmessigheter topper og daler for å enkelt gjenkjenne trender. 1 Først, ta en titt på vår tidsserie.2 På Data-fanen klikker du Data Analysis. Note kan ikke finne Data Analysis-knappen Klikk her for å laste inn Analysis ToolPak add-in.3 S velg Moving Average og klikk OK.4 Klikk i Inngangsområde-boksen og velg rekkevidde B2 M2.5 Klikk i Intervall-boksen og skriv 6.6 Klikk i feltet Utmatingsområde og velg celle B3.8 Skriv en graf av disse verdiene. Planlegging fordi vi stiller intervallet til 6, er glidende gjennomsnitt gjennomsnittet av de forrige 5 datapunktene og det nåværende datapunktet. Resultatet blir at toppene og dalene blir utjevnet. Grafen viser en økende trend. Excel kan ikke beregne det bevegelige gjennomsnittet for det første 5 datapunkter fordi det ikke er nok tidligere datapunkter.9 Gjenta trinn 2 til 8 for intervall 2 og intervall 4. Konklusjon Jo større intervallet jo flere tinder og daler utjevnes. Jo mindre intervallet, desto nærmere er de bevegelige gjennomsnittene er til de faktiske datapunktene.

Comments

Popular posts from this blog

Forex Trading Metatrader Indikatorer Av Og Ekspert Rådgivere Opplæringen

Best Forex Trading Plattform In Nigeria Lagos

Binære Options Handels Farer